Toward an Epistemic Foundation for Comparative Confidence

Branden Fitelson 1 David McCarthy 2

1Philosophy & RuCCS @ Rutgers & MCMP @ LMU
branden@fitelson.org
2Philosophy @ HKU
mccarthy@hku.hk

Aim: give epistemic justifications of coherence requirements for ≥ that have appeared in the contemporary literature.

Means: exploit a generalization of Joyce’s non-pragmatic argument for probabilism [18, 19]. Note: something similar has already been done for full belief [10, 1, 8, 13].

Joyce was inspired by an elegant geometrical argument of de Finetti [5] (see Extras). However, unlike de Finetti, Savage, et. al. [24, 15, 17] Joyce’s approach is epistemic in nature.

Abstracting away from Joyce’s argument, we have developed a framework [13] for grounding epistemic coherence requirements for judgment sets J = {j1, . . . , jn} (of type J) over agendas of propositions A ={p1, . . . , pn}.

Applying our framework involves three steps.

Step 1: Identify a precise sense in which individual judgments j of type J can be (qualitatively) inaccurate (or alethically defective/imperfect) at a possible world w.
We begin with some background assumptions about ≥.

Our first assumption is that our agents S form comparative confidence judgments ≥ regarding all pairs of propositions on some m-proposition agenda A, drawn from some n-proposition Boolean algebra B_n (m ≤ n, viz., A ≤ B_n).

Our second assumption is that ≥ is a total preorder on A, i.e., ≥ satisfies the following conditions, for all p, q, r ∈ A.

Totality. (p ≥ q) ∨ (q ≥ p).

Transitivity. If p ≥ q and q ≥ r, then p ≥ r.

Global versions of these are controversial [14, 12, 23]. We’re only assuming local versions of them (for some agendas A).

Once we’ve got a total preorder ≥ on A, we can then define a “strictly more confident than” relation on A, as follows.

p > q ⇔ p ≥ q and q ∗ p.

Because ≥ is a total preorder on A, it will follow that > is an asymmetric, transitive, irreflexive relation on A.

We can also define an “equally confident in” (or “epistemically indifferent between”) relation on A, as:

p ∼ q ⇔ p ≥ q and q ≥ p.

Since ≥ is a total preorder, ∼ is an equivalence relation.

Next, we’ll assume our agents S are logically omniscient.

(LO) S respects all logical equivalencies.

: If p, q are logically equivalent, then S judges p ∼ q. And, if S judges p > q, then p, q are not logically equivalent.

Finally, we’ll assume our agents S have regular ≥-orderings.

Regularity. If p is contingent, then p > ⊥ and ⊥ > p.

We can represent ≥-relations on agendas A via their 0/1 adjacency matrices A^≥, where A^≥_{ij} = 1 iff p_i ≥ p_j.

Toy example: let A = B_4 be the smallest sentential BA, with four propositions {⊥, P, ¬P, ⊤}, for some contingent P. Specifically, interpret P as “a tossed coin lands heads.”

The above figure shows the adjacency matrix and graphical representation of a relation (≥') on B_4. This relation ≥' is supported by S’s evidence E, if E says that the coin is fair.

Consider an alternative relation (≥’) on B_4, which agrees with ≥ on all judgments, except for ¬P ≥ P. That is, P >’ ¬P; whereas, P ∼ ¬P. [≥’ is depicted on the next slide.]

This alternative relation ≥’ on B_4 is supported by S’s evidence E, if E says that the coin is biased toward heads.

Intuitively, neither ≥ nor ≥’ should be deemed (formally) incoherent. After all, either could be supported by an agent’s evidence. We’ll return to evidential requirements for comparative confidence relations below. Meanwhile, Step 1.
\textbf{Step 1} involves articulating a precise sense in which an individual comparative confidence judgment \(p \geq q \) is inaccurate at \(w \). Here, we follow Joyce’s [18, 19] extensionality assumption, which requires “inaccuracy” to supervene on the truth-values of the propositions in \(\mathcal{A} \) at \(w \).

An individual comparative confidence judgment \(p \geq q \) is inaccurate at \(w \) iff \(p \geq q \) entails that the ordering \(\geq \) fails to rank all truths strictly above all falsehoods at \(w \).

On this conception, there are two facts about the inaccuracy of individual comparative confidence judgments \(p \geq q \).

\textbf{Fact 1.} If \(q \& \neg p \) is true at \(w \), then \(p > q \) is inaccurate at \(w \).

\textbf{Fact 2.} If \(p \neq q \) is true at \(w \), then \(p \sim q \) is inaccurate at \(w \).

\footnote{One might be tempted by a weaker (and “more Joycean”) definition of inaccuracy, according to which \(p \geq q \) is inaccurate if it contradicts \(p \sim q \) induced by the indicator function \(v_w \). This weaker definition (which also deems \(p \geq q \) inaccurate if \(p \equiv q \) is true at \(w \)) is untenable for us. This will follow from our Fundamental Theorem, below.}

\textbf{Step 2} requires a point-wise inaccuracy measure \(i(p \geq q, w) \).

There are two kinds of inaccurate \(\geq \)-judgments (Facts 1 and 2). Intuitively, these two kinds of inaccuracies should not receive equal \(i \)-scores. Mistaken \(> \)-judgments should receive greater \(i \)-scores than mistaken \(\sim \)-judgments.

\textbf{How much more inaccurate} than \(\sim \) mistakes are \(> \) mistakes? Twice as inaccurate! Suppose (by convention) that we assign an \(i \)-score of 1 to mistaken \(\sim \)-judgments. We must (!) assign an \(i \)-score of 2 to mistaken \(> \)-judgments.

\[i(p \geq q, w) = \begin{cases} 2 & \text{if } q \& \neg p \text{ is true at } w, \text{ and } p > q, \\ 1 & \text{if } p \neq q \text{ is true at } w, \text{ and } p \sim q, \\ 0 & \text{otherwise}. \end{cases} \]

\(\geq \)'s total inaccuracy (on \(\mathcal{A} \) at \(w \)) is the sum of \(\geq \)'s \(i \)-scores.

\[I(\geq, w) = \sum_{p,q \in \mathcal{A}} i(p \geq q, w). \]
• Two kinds of representability of \geq, by a real-valued f.
 • \geq is fully represented by $f \equiv$ for all $p, q \in B_n$
 $p \geq q \iff f(p) \geq f(q)$.
 • \geq is partially represented by $f \equiv$ for all $p, q \in B_n$
 $p > q \rightarrow f(p) > f(q)$.

- Now, (C) can be expressed equivalently, as follows:
 (C) S’s \geq-relation (assumed to be a total preorder on B_n)
 should be fully representable by some plausibility measure.

\[\textbf{Theorem 1.} \text{(WADA) entails (C). [See Extras for a proof.]} \]

- There are several other coherence requirements for \geq that
 can be expressed both axiomatically, and in terms of
 numerical representability by some real-valued f.

- We’ll state these, and say whether or not they follow from
 (WADA). The next requirements involve belief functions.

\[\textbf{Theorem 2.} \text{(A$_1$) (\geq) must be a total preorder on B_n} \]

\[\textbf{Theorem 3.} \text{(WADA) entails (C$_1$). [See Extras.]} \]

- Moving beyond (C$_1$) takes us into comparative probability. A
t.p. \geq is a comparative probability iff \geq satisfies (A$_1$), (A$_2$), &
 (A$_5$) If $\langle p, q \rangle$ and $\langle p, r \rangle$ are mutually exclusive, then:
 $q > p \rightarrow q \lor r > p \lor r$

\[\textbf{Theorem 4.} \text{(WADA) does not entail (C$_2$). [See Extras.]} \]

- The following axiomatic constraint is a weakening of (A$_5$).
 (A$_5'$) If $\langle p, q \rangle$ and $\langle p, r \rangle$ are mutually exclusive, then:
 $q > r \Rightarrow p \lor r \equiv p \lor q$

- And, the following coherence requirement is a
 (corresponding) weakening of coherence requirement (C$_2$).
 (C$_2'$) \geq should be a total preorder and satisfy (A$_1$), (A$_2$) and (A$_5'$).

\[\textbf{Theorem 5.} \text{(WADA) does not entail (C$_2'$). [See Extras.]} \]

- Our final pair of coherence requirements for \geq involve
 representability by some probability function.

- I’m sure everyone knows what a Pr-function is, but...

- Probability functions are special kinds of belief functions
 (just as belief functions were special kinds of PI-measures).
A probability mass function is a function m which maps states of B_n to $[0, 1]$, and which satisfies these two axioms.

\begin{itemize}
 \item (B1) $m(\bot) = 0$.
 \item (B2) $\sum_{s \in B_n} m(s) = 1$.
\end{itemize}

A probability function $Pr : B_n \rightarrow [0, 1]$ is generated by an underlying probability mass function m in the following way

$$Pr_m(p) \equiv \sum_{s \in B_n} m(s).$$

That brings us to our final pair of requirements for \succeq.

\begin{itemize}
 \item (C3) \succeq should be be be partially representable by some Pr-function.
 \item (C4) \succeq should be fully representable by some Pr-function.
\end{itemize}

de Finetti [3, 4] famously conjectured that (C2) entails (C4). But, Kraft et. al. [22] showed that (C2) \nRightarrow (C3). [See Extras.]

We have the following logical relations between the C's.

- full rep. by Pr
 $$(C_0) \xrightarrow{\neg} (C_1)$$
- partial rep. by Pr
 $$(C_2) \xrightarrow{\neg} (C_4)$$
- qualitative prob.
 $$(C_2) \cong (C_3)$$
- (A$_1$) + (A$_2$) + (A*_5)

If a requirement follows from (WADA), it gets a “\triangleright”. If a requirement does not follow from (WADA), it gets an “\nRightarrow.”

We conclude with our final (and most important) Fundamental Theorem(s). [See Extras for proofs.]

Theorem 1. (WADA) entails (C), viz., (WADA) \Rightarrow (A$_1$) & (A$_2$).

Proof.

Suppose \succeq violates (A$_1$). Because \succeq is total, this means \succeq is such that $\bot \succeq \top$. Consider the relation \succeq' which agrees with \succeq on all comparisons outside the (\bot, \top)-fragment, but which is such that $\top \succeq' \bot$. We have: $$(\forall w) \{i(\top \succeq' \bot, w) = 0 < 1 \leq i(\bot \succeq \top, w)\}. \quad \square$$

Suppose \succeq violates (A$_2$). Because \succeq is total, this means there is a pair of propositions p and q in A such that (a) p entails q but (b) $p \nRightarrow q$. Consider the relation \succeq' which agrees with \succeq outside of the (p, q)-fragment, but which is such that $q \succeq' p$. The table on the next slide depicts the (p, q)-fragments of the relations \succeq and \succeq' in the three salient possible worlds w_1-w_3 not ruled out by (a) $p \nRightarrow q$. By (b) & (LO), p and q are not logically equivalent. So, world w_2 is a live possibility, and \succeq' weakly I-dominates \succeq. \quad \square
General Background

There are only four alternative judgment sets that need to be shown (by exhaustive search) that $I(\succeq, w_i) \wedge I(\succeq', w_i)$.

<table>
<thead>
<tr>
<th>w_i</th>
<th>p</th>
<th>q</th>
<th>\succeq</th>
<th>\succeq'</th>
<th>$I(\succeq, w_i)$</th>
<th>$I(\succeq', w_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>T</td>
<td>T</td>
<td>$p \succ q$</td>
<td>$q \succ' p$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>w_2</td>
<td>T</td>
<td>F</td>
<td>$p \succ q$</td>
<td>$q \succ' p$</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>w_3</td>
<td>F</td>
<td>F</td>
<td>$p \succ q$</td>
<td>$q \succ' p$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Proof.

Having already proved Theorem 1, we just need to show that (WADA) entails (A3). Suppose \succeq violates (A3). Because \succeq is total, this means there must exist $p, q, r \in A$ such that (a) $p \equiv q$, (b) (q, r) are mutually exclusive, (c) $q > p$, but (d) $p \lor r \equiv q \lor r$. Let \succeq' agree with \succeq on every judgment, except (d). That is, let \succeq' be such that (e) $q \succ' p$ and (f) $q \lor r \succ' p \lor r$. There are only four worlds (p, q, r) state descriptions) compatible with the precondition of (A3). These are the following (state descriptions).

- $w_1 = p \land q \land \neg r$
- $w_2 = \neg p \land q \land \neg r$
- $w_3 = \neg p \land \neg q \land r$
- $w_4 = \neg p \land \neg q \land \neg r$

By (c) & (LO), p and q are not logically equivalent. As a result, world w_2 is a live possibility. Moreover, (f) will not be inaccurate in any of these four worlds. But, (d) must be inaccurate in world w_2. This suffices to show that \succeq' weakly I-dominates \succeq. \Box

Theorem 3.

(WADA) entails (C_1).

Proof.

Suppose $\Pr(\cdot)$ fully represents \succeq. Consider the expected I-inaccuracy, as calculated by $\Pr(\cdot)$, of \succeq: $\mathbb{E}_{\Pr}^I = \sum_{w \in A} \Pr(w) \cdot I(\succeq, w)$. Since $I(\succeq, w)$ is a sum of the $\i(p \succeq q, w)$ for each $(p, q) \in A$, and since \mathbb{E} is linear:

$$\mathbb{E}_{\Pr}^I = \sum_{p, q \in A} \Pr(p \succeq q, w)$$

(1) Suppose $\Pr(p) > \Pr(q)$. Then we have:

$$\Pr(p \succeq q, w) = 2 \cdot \Pr(q \land \neg p) < \Pr(p \succeq q, w) = \Pr(q \land \neg p), \text{ and}$$

$$\Pr(p \succeq q, w) = 2 \cdot \Pr(p \land \neg q) < \Pr(p \succeq q, w) = 2 \cdot \Pr(p \land \neg q).$$

(2) Suppose $\Pr(p) = \Pr(q)$. Then we have:

$$\Pr(p \succeq q, w) = \Pr(p \succeq q) = \Pr(p \succeq q, w) = 2 \cdot \Pr(q \land \neg p).$$

As a result, if \succeq is fully representable by any $\Pr(\cdot)$, then \succeq cannot be strictly I-dominated, i.e., $(C_1) \Rightarrow (SADA)$. Moreover, if we assume $\Pr(\cdot)$ to be regular, then \succeq must satisfy (WADA) [13]. \Box: $(R) \Rightarrow (WADA)$. \Box
Theorem. $a := 2; b := 0$ is the only assignment to a, b that ensures the following definition of i is evidentially proper.

$$i(p \geq q, w) \equiv \begin{cases} a & \text{if } q \land \neg p \text{ is true in } w, \text{ and } p > q, \\ b & \text{if } q \equiv p \text{ is true in } w, \text{ and } p > q, \\ 1 & \text{if } p \neq q \text{ is true in } w, \text{ and } p \sim q, \\ 0 & \text{otherwise.} \end{cases}$$

Let $m_4 = \Pr(p \land q), m_3 = \Pr(\neg p \land q)$, and $m_2 = \Pr(p \land \neg q)$. Then, the propriety of i is equivalent to the following (universal) claim. And, the only assignment that makes this (universal) claim true is $a := 2; b := 0$.

$$m_2 + m_4 > m_3 + m_4 \Rightarrow \left\{ \begin{array}{l} a \cdot m_3 + b \cdot (1 - (m_2 + m_3)) \leq a \cdot m_2 + b \cdot (1 - (m_2 + m_3)) \\ a \cdot m_3 + b \cdot (1 - (m_2 + m_3)) \leq m_2 + m_3 \end{array} \right.$$

$$m_2 + m_4 = m_3 + m_4 \Rightarrow \left\{ \begin{array}{l} m_2 + m_3 \leq a \cdot m_2 + b \cdot (1 - (m_2 + m_3)) \\ m_2 + m_3 \leq a \cdot m_3 + b \cdot (1 - (m_2 + m_3)) \end{array} \right.$$

In their seminal paper, Kraft et al. [22] refute de Finetti’s [3, 4] conjecture: $(\mathcal{C}_2) \Rightarrow (\mathcal{C}_4)$. In fact, they show $(\mathcal{C}_2) \nRightarrow (\mathcal{C}_4)$.

Their counterexample involves a linear order \succeq on an algebra $\mathcal{B}_{3,2}$ generated by five states: $\{s_1, \ldots, s_5\}$.

We won’t write down the entire linear order \succeq as this involves a complete ranking of 32 propositions. Instead, we focus only the following, salient 8-proposition fragment.

<table>
<thead>
<tr>
<th>\succeq</th>
<th>s_1</th>
<th>$s_2 \lor s_4$</th>
<th>$s_1 \lor s_2$</th>
<th>$s_2 \lor s_5$</th>
<th>$s_1 \lor s_2 \lor s_3$</th>
<th>$s_1 \lor s_2 \lor s_4$</th>
<th>$s_1 \lor s_2 \lor s_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$s_2 \lor s_4$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$s_1 \lor s_2$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$s_1 \lor s_2 \lor s_3$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$s_1 \lor s_2 \lor s_4$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$s_1 \lor s_2 \lor s_5$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Simplest case of dF’s Theorem [5]: $b(P) = x; b(\neg P) = y$. The diagonal lines are the probabilistic b’s (on $(P, \neg P)$).

The two directions of de Finetti’s theorem (for $(P, \neg P)$) can be established via these two figures. And, this simplest $(P, \neg P)$ version of the Theorem generalizes from the simplest propositional Boolean algebra \mathcal{B}_4 to \mathcal{B}_n, for any n.
There are two, weaker \(\succsim \)-dominance requirements that we discuss in the book [13]. These are as follows.

Strict Accuracy-Dominance Avoidance (SADA). \(\succsim \) should *not be strictly dominated* in inaccuracy (according to \(T \)). More formally, there should not exist a \(\succsim' \) (on \(\mathcal{A} \)) such that

\[
(\forall w) \ [T(\succsim', w) < T(\succsim, w)].
\]

- Of course, (SADA) is *strictly weaker* than (WADA). And, here is a requirement that is *even weaker* than (SADA).

- Let \(M(\succsim, w) \equiv \text{the set of } \succsim \text{'s inaccurate judgments at } w \).

Strong Strict Accuracy-Dominance Avoidance (SSADA). There should not exist a \(\succsim' \) on \(\mathcal{A} \) such that:

\[
(\forall w) \ [M(\succsim', w) \subset M(\succsim, w)].
\]

- Some of our (WADA) results also *go through* for (SADA) and/or (SSADA). Finally, we give a complete, "big picture" of all the logical relations among all the requirements.

References

